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Abstract

We exploit 0.5◦×0.5◦ raster data for mainland Southeast Asia from 2010 to 2020 to

document a non-linear relationship between extreme temperature days and conflict. We

show that the occurrence of conflict events increases with extreme maximum temperature

days, whereas days with extreme minimum temperature decrease the occurrence of conflict.

Because climate change makes both maximum and minimum temperature extremes more

likely, these effects partially offset each other on aggregate. However, our results further

suggest that the impact of extreme maximum and minimum temperature days differs for the

type of conflict, actors involved and population affected, indicating complex distributional

consequences.
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1 Introduction

Ongoing climate change implies an increased frequency of extreme weather events, and ob-

served trends are projected to persist in the coming decades (IPCC, 2021). While adaptation

to these trends is a private good, so that firms, households and governments could be expected

to optimally update their behavior in presence of new extremes, institutional failure and credit

constraints have raised concerns that climate change may disproportionately affect the more

disadvantaged segments of the population. In particular, a growing literature documents the

effects of climate change on instability and violent conflicts, emphasizing that regions heavily

reliant on weather-sensitive natural capital and possessing limited capacity to cope with shocks

are likely more vulnerable (Von Uexkull et al., 2016; Koubi, 2019; see also Burke et al., 2015).

This paper documents a non-linear effect of weather extremes on conflict incidence (i.e., the

probability of a violent conflict occurring during a year, see Hsiang and Meng, 2014; McGuirk

and Nunn, 2020). As climate change results in a gradual increase in average temperature, both

maximum and minimum daily temperature are also expected to rise. Consequently, the like-

lihood of days with extreme maximum and minimum temperature will increase. And while

extreme maximum temperature can negatively affect livelihoods, notably because of lower agri-

cultural output and increased competition over resources (Breckner and Sunde, 2019), days

with extreme high minimum temperature can potentially improve living conditions and increase

the opportunity cost of violent conflict.1 Moreover, failure to control for extreme minimum tem-

perature could bias estimates associated with extreme maximum temperature whenever these

two variables are correlated.

To document the non-linear impact of extreme temperature days on conflict events, we em-

ploy data for mainland Southeast Asia covering the period from 2010 to 2020 with sub-national

cells of approx. 55 km by 55 km as units of observation.2 While a wide majority of the exist-

ing literature focuses on Africa, Southeast Asia exhibits a number of vulnerability risk factors,

such as an important agricultural sector, the presence of ethno-political discrimination and a

1 For example, Tao et al. (2008) report that higher daily minimum temperature increase rice yields in China, and
Nicholls (1997) shows that this effect also applies to wheat in relation to a reduced frost occurrence. The impact
of extreme temperature is, however, context dependent (Welch et al., 2010), and we come back to the possibility
of an agricultural channel below.

2 The countries included in our analysis are Cambodia, Laos, Myanmar, Thailand, and Vietnam. As discussed
below, we do not consider Malaysia because of data availability issues.
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Figure 1: Trends in temperature in mainland Southeast Asia, 1979–2020

(a) Average temperature anomalies (b) Extreme temperature days

Notes: This figure is derived from temperature data for Cambodia, Laos, Myanmar, Thailand, and Vietnam for the period 1979–2020
(source: ECMWF-ERA5, Hersbach et al., 2020). Panel (a) reports difference in average temperature relative to a reference period
defined from 1979 to 2009. Panel (b) shows the number of days per year with average daily temperature above the 90th percentile
defined on a 1979–2009 sub-monthly climate normal. See Section 2.1 for further details. The curve in each panel is a locally
estimated scatterplot smoothing.

history of violence (Collier, 2000; Barnett and Adger, 2007).3 In addition, observed changes

in the local climate has been rapid and significant. This trend is illustrated in Figure 1, which

reports temperature anomalies and extreme temperature days from 1979 to 2020. Providing

empirical evidence on how climate change affects conflicts in this area is therefore an important

contribution of our work.

However, our main contribution is to document the distinct role of extreme maximum and

minimum temperature days on the occurrence of conflict events. Specifically, we define two

day count indexes at the grid cell level based on reanalysis data from the European Centre for

Medium-Range Weather Forecasts (ECMWF-ERA5, Hersbach et al., 2020). The first index is the

number of days with maximum daily temperature in the 90th percentile of the 1979–2009 sub-

monthly climate normal.4 We refer to these as days with extreme maximum temperature. The

second index is the number of days with minimum daily temperature in the 90th percentile of

the 1979–2009 sub-monthly climate normal. We refer to these as days with extreme minimum

3 For instance, Myanmar and Thailand both exhibit discrimination against Muslim minorities and have recently
experienced violence accompanied by military takeovers.

4 This definition follows guidance on day count index computation by the World Meteorological Organization
(Tank et al., 2009), and the 90th percentile is commonly used as a value for extremes (e.g., IPCC, 2021). The
1979–2009 sub-monthly climate normal refers to the distribution of maximum and minimum hourly temperature
for a five-day window around each calendar day.
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temperature. Importantly, higher values for these two indexes correspond to the occurrence of

unusually high temperature, but they separately capture trends in the evolution of each tail of

the temperature distribution.

We first use these two indexes to quantify the reduced form impact of annual fluctuations in

extreme temperature days on the occurrence of conflict events. Our measure of conflict events

is based on geo-referenced data from the Armed Conflict and Location Event Dataset (ACLED

Raleigh et al., 2010), which allows us to identify grid cells with at least one conflict event in

a given year. The literature on the social and economic impacts of climate change generally

suggest that weather fluctuations are exogenous to socio-economic outcomes after conditioning

for fixed effects and trends (Burke et al., 2015; Hsiang, 2016; Carleton and Hsiang, 2016).5 In

addition, our empirical approach has several advantages. First, our day count indexes capture

short-term episodes of extreme temperature which can be hidden in monthly or yearly averages

(Deschênes and Greenstone, 2011). Second, the use of a percentile threshold allows us to detect

extreme temperature days in different climate zones, an important feature for the geographical

area we consider.6 Lastly, we employ a measure of grid cell-level climate normal defined on a

sub-monthly basis, which allows identifying local temperature shocks throughout the year and

not only during the hot season.

We then exploit information about types of conflicts and actors involved available in ACLED

and investigate the heterogeneous impacts of extreme maximum and minimum temperature

days. Specifically, Seter (2016) suggests that livelihood contraction associated with climate

extremes can result in violence against local governments or other local groups when popula-

tions do not have sufficient resources to challenge the state. Based on this, we quantify how

extreme maximums and minimums differentially affect the occurrence of different types of con-

flict events: battles between armed forces, violence against civilians, communal violence and

state-based conflicts. We further study how extreme maximums and minimums distinctly af-

fect conflict events involving the following pairs of actors: state forces, rebel groups, political

militias, identity-based militias, and civilians. Lastly, we provide evidence about the role of

vulnerability factors and socioeconomic context to explain climate-conflict linkages. Following

5 Note that we also control for precipitations as these tend to correlate with temperature and omitting these from
the analysis could confound the causal effect of temperature shocks (Auffhammer et al., 2013).

6 For example, the northern part of Southeast Asia has a warm temperate climate while the south features a
tropical climate (Beck et al., 2018).
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Von Uexkull et al. (2016), we consider economic development, dependence to agriculture, po-

litical discrimination of ethnic groups, as well as the role of demographic pressure (see also

Breckner and Sunde, 2019).

Our results suggest that extreme maximum and minimum temperature days have a signif-

icant impact on conflict occurrence although these go in opposite direction. In our preferred

specification, which includes both cell and country-by-year fixed effects, the contemporaneous

effect for an additional day with extreme maximum temperature on conflict incidence is 0.075

percentage points (pp). By contrast, the effect is -0.047 pp for extreme minimum tempera-

ture days. This corresponds, respectively, to 0.9% and 0.6% of the unconditional probability of

conflict events. In line with these countervailing effects, we find that conflict incidence is on ag-

gregate not affected by anomalies in average temperature. Among an extensive set of robustness

checks, we further show that these reduced-form results hold qualitatively when we use a 1◦×1◦

grid resolution and when we consider average maximum and minimum daily temperature as our

variable of interest.

While impacts of extreme maximum and minimum temperature days partially offset each

other, our analysis of heterogeneity suggests that the type of conflicts and actors involved differ

for extreme maximums and minimums. In particular, the effect of extreme minimums is concen-

trated on violence against civilians while extreme maximums also affect battles and state-based

conflicts. Furthermore, extreme minimum temperature days affect conflict events involving

political militias against civilians, whereas extreme maximums trigger conflicts between state

forces and civilians, political militias and rebel groups. These results suggest a differential effect

of climate change for different groups of affected populations. Nevertheless, we also find that

the impact of extreme maximums and minimums are both more pronounced in locations with

ethno-political discrimination. By contrast, our data do not indicate a role for other vulnerability

factors, namely economic development, local importance of agriculture, and population density.

Our work contributes to a large literature on the impact of climate change on conflicts,

which so far has predominantly focused on Africa. For example, Burke et al. (2009) find that

an increase of average temperature raises the likelihood of civil wars and Harari and La Ferrara

(2018) provide geographically disaggregated evidence that droughts increase the occurrence of

conflict events (see also Maystadt et al., 2014, on civil conflicts in North and South Sudan).

The impact of weather extremes on conflicts is also documented in O’Loughlin et al. (2012) for
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East Africa, O’Loughlin et al. (2014) for sub-Saharan Africa, and in Breckner and Sunde (2019)

using gridded data for the entire African continent. Our work confirms that extreme weather

events have a significant impact on conflict, although our focus on mainland Southeast Asia

is important because of a potential sampling bias associated with Africa (Adams et al., 2018).

Moreover, relative to these studies, we show that extreme minimums reduce the occurrence of

conflicts, thereby emphasizing the importance of non-linear effects in the relationship between

climate and conflict.

Our work also contributes to a much smaller number of related studies that focus on Asia.

Wischnath and Buhaug (2014) use data for the entire Asian continent and find no consistent

evidence that anomalies in average temperature and precipitation have an impact on conflicts.

By documenting countervailing effects of extreme maximum and minimum temperature days,

we offer a potential explanation for inconclusive results at the average. Closer to our work,

Crost et al. (2018) use data for the Philippines to show that the impact of rainfall on conflict

is negative during the dry season and positive during the wet season, taking into account the

monsoon regime and highlighting agricultural yields as a risk factor (see also Caruso et al.,

2016, for Indonesia). By contrast, we show how extreme maximum and minimum temperature

differentially impact the type of conflicts, actors involved, and populations affected, so that

impacts for local communities do not cancel out.

Finally, we contribute to a literature focusing on the role of context in the relationship be-

tween climate change and conflict. For example, Maystadt et al. (2014) show that pastoral

and agro-pastoral groups are more strongly affected by temperature shocks in North and South

Sudan. Studying the effect of extreme temperature, Breckner and Sunde (2019) finds an am-

plifying role of demographic pressure on the African continent. Neither Buhaug (2010) nor

O’Loughlin et al. (2012) find that economic development and ethno-political discrimination af-

fect the relationship between climate shocks and conflicts in Africa. In Asia, Crost et al. (2018)

and Caruso et al. (2016) both focus on the agricultural channel. In the geographical area we con-

sider, our data instead suggest that ethno-political exclusion is a key driver of conflict incidence

and significantly amplifies the effect of both extreme maximum and minimum temperature days.

The rest of our paper is organized as follows. Section 2 presents our data and lays out

our empirical strategy. Section 3 provides descriptive statistics and delivers our main empirical

results. Section 4 reports an extensive set of robustness checks. Finally, in Section 5 we discuss
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the broader picture emerging from the collective results and briefly conclude.

2 Data and empirical strategy

In this section, we first describe the dataset we assemble to quantify the impact of extreme

temperature days on conflict events. Second, we discuss our estimation strategy for our reduced

form specification. Third, we present how we extend the analysis to account for heterogeneity

in terms of conflict types, actors involved, and vulnerability factors. Lastly, we list a number of

robustness checks.

2.1 Main data sources

Our dataset has the structure of a raster and brings together several geo-referenced data sources.

We consider grid cells of 0.5◦ latitude/longitude as our unit of observation, which corresponds

to squares of approximately 55 km by 55 km at equator.7

Geo-referenced conflict data is taken from ACLED, which documents inter-group conflicts,

political violence, demonstrations and politically relevant non-violent events across the world

(Raleigh et al., 2010). Each event is defined in terms of type, date, latitude, longitude and

actors involved. Data coverage is from 2010 to 2020 and includes Cambodia, Laos, Myanmar,

Thailand, and Vietnam.8 We focus on conflict events corresponding to a common definition

from the Uppsala Conflict Data Program (UCDP): “an incident where armed force was used by

an organized actor against another organized actor, or against civilians, resulting in at least one

direct death” (p.4, Högbladh, 2022). In our analysis of heterogeneous effects, further discussed

below, we exploit information about the type of conflict and actors involved.

Climate data are from a high-quality reanalysis dataset of meteorological measurement

(ECMWF-ERA5, Hersbach et al., 2020), which combines different sources in a consistent way

(including data from weather stations and those from satellites, among other sources). Impor-

7 In our robustness checks we also consider grid cells of 1◦ latitude/longitude to alleviate concerns that the choice
of grid cell size drive the results. We come back to this below.

8 Information is collected from local, regional, and national sources such as newspapers, reports from humani-
tarian agencies, and research publications. As discussed in Harari and La Ferrara (2018) one potential concern
with data is selection in reporting, although a systematic correlation with extreme maximum and minimum tem-
perature days is unlikely. Data for Malaysia only starts in 2018, so that we do not include this country in our
analysis.
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tantly, reanalysis data are less likely to suffer from measurement error that could potentially

correlate with unobserved characteristics. Gridded data for temperature are available at an

hourly frequency from 1979 onwards and we also retrieve total monthly precipitation in meters

of water equivalent for each grid cell. We match a raster containing climate data for grid cells

of 0.5◦×0.5◦ to geo-referenced data on individual conflict events.

We use these data to construct our main variables of interest, namely the number of extreme

maximum and minimum temperature days for each year and grid cell over the observation pe-

riod (2010-2020). Following guidelines by the World Meteorological Organization on day count

index computation (Tank et al., 2009), we employ data from 1979 to 2009 to determine a sub-

monthly climate normal for each grid cell. More specifically, for each calendar day in a year,

we consider a five-day window for which we define a distribution of daily maximums and min-

imums. A given day d during the observation period is then classified as an extreme maximum

if its maximum daily temperature is above the 90th percentile of daily maximums observed in

the sub-monthly climate normal.9 Conversely, days with extreme daily minimums are those for

which the minimum daily temperature is above the 90th percentile of daily minimum observed

in the sub-monthly climate normal. This allows us to measure temperature extremes through-

out the year relative to a sub-monthly reference of five days computed over a 30-year period.

Our two main variables of interest are then the number of days in a year with extreme daily

maximums and extreme daily minimums. We discuss alternative indicators for the climate in

the robustness checks below.

2.2 Empirical identification

Our objective is to identify the causal effect of changes in the number of extreme temperature

days on the occurrence of conflict events. To do so, we exploit yearly temperature shocks as

a set of natural experiments and rely on the idea that the most appropriate counterfactual for

a grid cell with an additional extreme maximum / minimum temperature day is the grid cell

itself just before or after having undergone the shock (Carleton and Hsiang, 2016). Our em-

pirical strategy therefore leverages repeated observation for each grid cell together with fixed

9 For instance, the day “January 15, 2015” is classified as an extreme maximum day for a given grid cell if the
maximum temperature on that day is higher than the 90th percentile in the distribution of daily maximums for
January 13 to 17 observed from 1979 to 2009 in that grid cell (155 observations, i.e., 5 days × 31 years).
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effects. Intuitively, this allows us to control for factors such as culture, history, geography or

political institutions that can be assumed to remain constant over the observation period. After

conditioning on trends, the literature generally assumes that weather variability is exogenous

to social or economic changes and solely determined by random geophysical processes (Hsiang,

2016).

One implication of this identification strategy is that control variables are not necessary. In

fact, their inclusion could potentially introduce an endogeneity problem if weather shocks also

affect these control variables. One example of a control variable that is endogenous to climatic

conditions is income, as GDP has been shown to be affected by yearly fluctuations in the weather

(e.g., Dell et al., 2012). However, rainfall is an exemption, as the amount of rain tends to

correlate with temperature, and therefore it is necessary to control for precipitation in order to

identify the causal impact of temperature extremes (Auffhammer et al., 2013). Furthermore,

we follow Burke et al. (2015) by including both contemporaneous and lagged meteorological

variables, so as to quantify delayed or persistent impacts.

Formally, the outcome variable Conflict is equal to 1 if at least one conflict event occurred in

cell i during year t, and the baseline equation we estimate is given by:

Conflicti,t =β1 · Daily tmax >90pi,t + β2 · Daily tmax >90pi,t−1+ (1)

γ1 · Daily tmin >90pi,t + γ2 · Daily tmin >90pi,t−1+

δ1 · Precipitationi,t + δ2 · Precipitationi,t−1 + αi + µc,t + εi,t

where Daily tmax >90p and Daily tmin >90p are indexes for days with extreme maximum and

minimum temperature, respectively, and Precipitation is total yearly rainfall. The parameters

β and γ are the coefficients of interest and measure, respectively, the contemporaneous and

lagged effect of extreme temperature days. Taken together, these quantify non-linear impacts

of extreme maximum and minimum temperature days on conflict events. We control for time-

constant unobserved characteristics with cells fixed effects (αi) and account for time-varying

nationwide shocks with country-by-year fixed effects (µc,t). Finally, ε is an error term.

Equation (1) is a linear probability model and can be estimated with OLS. Following McGuirk

and Nunn (2020), we employ two-way cluster standard errors at the cell and climate zone-

year level. First, idiosyncratic errors are expected to be serially correlated within a cell when-
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ever unobserved components of conflicts are correlated over time. Second, weather variables

are correlated across space, which implies that the error term will be spatially correlated (see

Auffhammer et al., 2013).10 Below we also consider the use of spatial heteroskedastic and

autocorrelation consistent estimator (spatial HAC) based on Conley (1999).

While our main objective is to identify the impact of climate change on the occurrence of con-

flict events, equation (1) quantifies the reduced form impact of weather shocks as a set of natural

experiments. This is because we do not measure the climate directly, but only its realizations

through the weather.11 For changes in the weather to be equivalent to changes in the climate,

we need to assume that a marginal change in the weather is equivalent to a marginal change in

climate, an assumption called marginal treatment comparability (Hsiang, 2016). While this as-

sumption may be more credible when comparing long-run averages (see, e.g., Von Uexkull and

Buhaug, 2021, for a critical discussion), it goes against unit comparability that is necessary for

causal identification, an issue discussed as the frequency-identification trade-off by Burke et al.

(2015). Importantly Hsiang (2016) uses an argument based on the envelope theorem to show

that marginal treatment comparability holds when the outcome considered is the solution of a

maximization problem. This is supported by existing evidence suggesting that a deterioration in

livelihoods and decreased opportunity cost of violence is a key driver of conflict.

2.3 Heterogeneous effects

The literature highlights potential heterogeneity among different types of conflict events and

different actors (Seter, 2016; Harari and La Ferrara, 2018), well as the role of potential vulner-

ability factors (e.g., Von Uexkull et al., 2016; Breckner and Sunde, 2019). In this section we

provide an overview of our analysis of heterogeneity to further document the impact of extreme

maximum and minimum temperature days.

We start by considering how extreme temperature days affect the occurrence of a number of

conflict types as reported in ACLED. The first type is battles, which involve close-range interac-

tions between two organized armed forces and do not involve civilians. The second is violence

10 Climate zones are identified by the Köppen Climate Classification which divides regions according to precipitation
and temperature (Beck et al., 2018). For the area we consider, this gives seven different climate zones.

11 By definition, the term climate refers to the expected distribution of a set of random variables that characterize
the atmosphere and the oceans, whereas the weather refers to realizations of these variables.
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against civilians, encompassing all conflict events that involve armed groups against unarmed

non-combatant. Third, we consider conflict events of communal violence that exclude govern-

ment forces. In ACLED this is classified as events involving identity militias, which are organized

around values such as religion, ethnicity, or regional affiliation and usually pursue local objec-

tives. Fourth, we document the occurrence of state-based conflicts, which are events involving

official forces interacting with an organized armed group.

Next, we focus on conflict events involving specific pairs of actors. Following Harari and

La Ferrara (2018), we consider the following actors: (i) the state, including military and police

forces; (ii) armed rebels seeking power or separatism; (iii) political militias pursuing political

goals; (iv) identity militias (defined above); and (v) civilians. For each pair of actors, the

outcome variable is equal to one if at least one conflict event involving a specific pair of actors

occurred, zero otherwise.

Lastly, we identify a number of potential vulnerability factors that could affect the relation-

ship between extreme maximum / minimum temperature days and conflict events. These factors

are informed by the work of Von Uexkull et al. (2016) and Breckner and Sunde (2019), and we

extend our baseline specification (equation 1) as follows:

Conflicti,t =β1 · Daily tmax >90pi,t + β2 · Daily tmax >90pi,t−1+ (2)

β3 · Daily tmax >90pi,t × Zi + β4 · Daily tmax >90pi,t−1 × Zi+

γ1 · Daily tmin >90pi,t + γ2 · Daily tmin >90pi,t−1+

γ3 · Daily tmin >90pi,t × Zi + γ4 · Daily tmin >90pi,t−1 × Zi+

δ1 · Precipitationi,t + δ2 · Precipitationi,t−1 + αi + µc,t + εi,t

where Zi stands for a specific vulnerability factor and is interacted with our day count indexes.12

The first vulnerability factor we consider is economic development, which can influence

the ability of local populations to adapt. To quantify this, we employ data for 2012 average

nighttime light emissions for each grid cell (Elvidge et al., 2021), an approach that has recently

12 Note that the variable capturing vulnerability factors Zi is not indexed by time and hence it does not enter the
regression as a separate variable. In particular, Z is measured at the beginning of the sample period to mitigate
endogeneity concerns, and it is therefore controlled for by the inclusion of cell fixed effects.
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gained traction in the economic literature (see Gibson et al., 2021, for a discussion).13 The

second factor is local predominance of agriculture as an economic activity. As crop output

may be particularly sensitive to extreme temperature events, agricultural dependence is usually

considered to be a risk factor in the relationship between climate and conflict. We define Zi

as 2010 cropland extent at the grid cell level with data from Potapov et al. (2022). The third

vulnerability factor is the the presence of ethno-political discrimination, which implies that a

share of the population tends to be less supported by the state and potentially targeted by

grievances. We employ 2010 data from the Geo-referencing Ethnic Power Relations dataset

(Vogt et al., 2015) to construct an indicator variable equal to 1 if a politically marginalized

ethnic group resides in a given grid cell, zero otherwise. The last factor is demographic pressure,

as dense population may exacerbate pressure on natural resources in the presence of a weather

shock (Breckner and Sunde, 2019). For this purpose, we use 2010 data on population density

for each grid cell from the Gridded Population of the World V4 (Center for International Earth

Science Information Network, 2018). The data supporting our vulnerability analysis is described

in more detail in Appendix A.

2.4 Robustness checks

We now turn to robustness checks with respect to several methodological choices. The first is

the size of grid cells. While a number of papers in the conflict literature employ grid cells of

0.5◦×0.5◦ (e.g., Wischnath and Buhaug, 2014; Döring, 2020), others also use a resolution of

1◦×1◦ (e.g., O’Loughlin et al., 2012; Harari and La Ferrara, 2018). The choice of grid cell size

can potentially influence the results, a bias called the modifiable areal unit problem, and our

first robustness check replicates our reduced-form results with a 1◦ grid resolution.

The second robustness check considers alternative measures of temperature shocks, and

we re-estimate equation (1) with a the following variables: (i) yearly mean temperature stan-

dardized with respect to 1979-2009 climate normal, (ii) average daily minimum and maximum

temperature expressed as deviations from the 1979-2009 climate normal, (iii) number of ex-

treme temperature days based on daily mean temperature, and (iv) a standardized precipitation

and evapotranspiration index (SPEI) measured in December with a time scale of 12 months.

13 Data for nighttime light emissions are transformed using an inverse hyperbolic sine to reduce skewness and
account for the presence of zeros. See Appendix A.

11



Following Von Uexkull et al. (2016), we consider both a 12-month SPEI index and a drought

indicator equal to 1 if SPEI≤–1, zero otherwise. See Appendix B for further discussions.

The third robustness check replicates reduced-form results using an alternative dataset for

conflict events, namely the UCDP Georeferenced Event Dataset (UCDP GED Sundberg and Me-

lander, 2013; Davies et al., 2022). This data source is one of the main providers of conflict

data and has been used elsewhere in the literature, including papers that investigate the rela-

tionship with climate (e.g., Buhaug, 2010; Fjelde and von Uexkull, 2012; Von Uexkull et al.,

2016). Based on these data, we construct an alternative variable measuring conflict events; see

Appendix B for a more detailed description of these data in comparison with the ACLED data

source.

Lastly, we check for the sensitivity of our results with respect to a surge of violent incidents

that occur in western Myanmar since 2017 (commonly known as the Rohingya conflict). In order

to mitigate concerns that this local conflict drives the results, we estimate the main specification

excluding grid cells that intersect with the Rakhine State of Myanmar in which the conflict takes

place.

3 Main empirical results

This section presents the results of our empirical analysis. We start by providing summary statis-

tics for our data. Second, we report reduced-form regression results for the impact of extreme

temperature days on conflict events. Third, we report our disaggregated analysis according to

the type of conflict, actors involved and potential vulnerability factors.

3.1 Descriptive statistics and spatial representation

In Table 1 we report summary statistics for conflict event occurrence, climate variables, and

vulnerability factors. Observations are grid cells of 0.5◦ latitude/longitude for Cambodia, Laos,

Myanmar, Thailand, and Vietnam. Data for climate and conflict cover the period from 2010 to

2020, while vulnerability factors refer to a single year toward the beginning of the observation

period.

Starting with conflict data, we observe an average yearly probability of 8.4% that a grid cell

experienced at least one conflict event in which the use of armed force resulted in one direct
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Table 1: Summary statistics, 2010–2020

Variable Mean S.D. Min. Max.

Conflict data
Occurrence of conflict events 0.08 0.28 0 1

By type
Battles between armed forces 0.05 0.21 0 1
Violence against civilians 0.05 0.22 0 1
Communal violence 0.004 0.06 0 1
State-based conflicts 0.05 0.21 0 1

By actor
State forces 0.06 0.25 0 1
Rebel groups 0.04 0.20 0 1
Political militias 0.04 0.18 0 1
Identity militias 0.01 0.07 0 1
Civilians 0.06 0.24 0 1

Climate variables
Daily tmax >90p (days) 82.97 34.51 0 212
Daily tmin >90p (days) 80.78 34.92 5 232
Total precipitation (meters) 8.10 2.80 2.31 28.74

Vulnerability factors
Nighttime light emissions (2012, IHS) 0.18 0.44 0 4.85
Cropland extent (2010, %) 17.59 24.07 0 88.45
Ethno-political discrimination (2010) 0.09 0.29 0 1
Population density (2010, pop/km2) 135.83 310.04 0.38 5,412.5

Notes: Summary statistics for climate and conflict data are computed over 8327 obser-
vations, which corresponds to 757 cells observed over 11 years (2010–2020). “Daily
tmax >90p” and “Daily tmin >90p” are, respectively, the number of days with maximum
and minimum daily temperature in the 90th percentile defined on the 1979–2009 sub-
monthly climate normal. Data for vulnerability factors refer to grid cell observations for
a single year. For nighttime light emissions we apply an inverse hyperbolic sine transfor-
mation (IHS).

death or more. Among different types of conflicts, we observe comparable risk of occurrence

for battles (4.7%), violence against civilians (5.2%), and state-based conflicts (4.6%), whereas

communal violence is less prevalent (0.4%). In line with this, the main actors involved in conflict

events are state forces (6.4%), civilians (5.9%) and rebel groups (4.2%), followed by identity

militias (0.5%).

Climate variables suggest a significant increase in extreme temperature days relative to the

sub-monthly climate normal measured from 1979 to 2009. The variable Daily tmax >90p, an

index for the number of days with maximum daily temperature in the 90th percentile of the

1979–2009 sub-monthly climate normal, is around 83 on average. The corresponding number

for extreme minimum temperature days, measured by the variable Daily tmin >90p, is around
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Figure 2: Trends in extreme temperature days for mainland Southeast Asia, 1979–2020

(a) Daily tmax >90p (days) (b) Daily tmin >90p (days)

Notes: This figure is derived from temperature data for Cambodia, Laos, Myanmar, Thailand, and Vietnam for the period 1979–2020
(source: ECMWF-ERA5, Hersbach et al., 2020). In Panel (a) “Daily tmax >90p” is the number of days with maximum daily
temperature in the 90th percentile defined on the 1979–2009 sub-monthly climate normal. In Panel (b) “Daily tmin >90p” is the
number of days with minimum daily temperature in the 90th percentile defined on the 1979–2009 sub-monthly climate normal.
The curve in each panel is a locally estimated scatterplot smoothing.

81. This represents an increase of around 45 days relative to the reference period in which the

number of days with extreme maximums and minimums is around 36.5 by construction. This

increasing trend for the occurrence of extreme daily maximums and minimums temperature is

further illustrated in Figure 2.

The spatial distribution of conflict events and extreme temperature days is mapped in Figure

3. Specifically, we display average yearly number of extreme temperature days at the grid cell

level for 2010-2020 and overlay the occurrence of conflict events for that period. Panel (a)

reports extreme daily maximums and panel (b) focuses on extreme daily minimums.

A comparison of panels (a) and (b) suggests important heterogeneity in how daily maxi-

mums and minimums are distributed across space. In particular, days with extreme maximum

temperature (panel a) are more likely to occur in western Myanmar, southern Thailand, and in

southeastern part an area that encompasses Cambodia and Vietnam. We also observe a relatively

high count of extreme maximums in an area encompassing Myanmar, Thailand, and northern

Laos. By contrast, days with extreme minimum temperature (panel b) are mostly confined to the

southern portion of a region spanning Cambodia, Thailand and Vietnam. Therefore, while re-

gional occurrence of extreme temperature days tends to be correlated, the two types of extremes

have a very distinct pattern of spatial occurrence.
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Figure 3: Extreme temperature days and conflict events in mainland Southeast Asia

(a) Extreme maximum temperature (b) Extreme minimum temperature

Notes: This figure shows the spatial distribution for the average number of extreme temperature days for 2010-2020, with overlaid
conflict events occurring during that period. Panel (a) reports the average number of days with extreme maximum daily temperature
in the 90th percentile defined on the 1979–2009 sub-monthly climate normal, while panel (b) instead focuses on daily minimums.

Figure 3 further shows some geographical clustering of conflict events. First, the western

part of Myanmar (Rakhine/Chin) is associated with the long-standing Rohingya conflict, char-

acterized by violence and persecution against a Muslim minority. A second cluster of conflict

events is in the northeastern part of Myanmar (Kachin/Shan), where multiple armed groups

with insurgent claims clash with local state forces. The third cluster is in the southern provinces

of Thailand (Narathiwat, Pattani, and Yala), where violence is ongoing between Muslim sepa-

ratists and the Buddhist majority government. Grid cells in other areas of the map exhibit a

more dispersed pattern of conflict, with relatively fewer events reported in Laos and Vietnam.

Turning to vulnerability factors discussed in Section 2.3 and reported at the bottom of Ta-

ble 1, our data suggests significant variability, with spatial heterogeneity illustrated in Figure 4.

Specifically, we map nighttime light emissions in panel (a), cropland extent in panel (b), politi-

cally discriminated ethnic groups in panel (c) and population density in panel (d). These data

refer to the beginning of the observation period (2010), except for nighttime light emissions for

which the earliest observation is 2012 (see Appendix A for further details).

15



Figure 4: Spatial distribution of vulnerability factors

(a) Nighttime light emissions (b) Cropland extent

(c) Ethno-political discrimination (d) Population density

Notes: This figure shows the spatial distribution of the vulnerability factors employed in the analysis. Panel (a) reports 2012
nighttime light emissions with an inverse hyperbolic sine (IHS) transformation applied. Panel (b) shows 2010 cropland extent
(coverage percentage). Panel (c) is 2010 location of politically discriminated ethnic groups. Panel (d) is 2010 population density
(persons per square kilometer). See Appendix A for further definitions and data sources.
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Data for nighttime light emissions displayed in panel (a) suggest higher economic activities

in Thailand and in Vietnam, which coincides with higher GDP figures by the World Bank for

these two countries. Cropland extent (panel b) indicates that Thailand, parts of central Myan-

mar, Cambodia, and the lower part of Vietnam have the largest area devoted to agriculture. This

is consistent with FAO data showing that these countries are among the largest producers of

paddy rice in the world. Panel (c) shows that the spatial distribution of politically discriminated

ethnic communities aligns with that of conflict events discussed above, especially in Myanmar

(the Rohingyas) and in Thailand (the Malay Muslims). No groups are reported in Laos or Viet-

nam. Lastly, data for population density in panel (d) highlights a number of major cities such

as Bangkok, Hanoi, Ho Chi Minh and Yangon, and is lowest in Laos, Cambodia and parts of

Myanmar.

Taken together, the descriptive analysis suggests ample grid cell variability in the variables

we consider. The spatial distribution of conflicts shows clusters in western Myanmar and south-

ern Thailand, which coincide with ethno-political discrimination. We also observe a significant

shift in the distribution of extreme temperature days, with an increase in the occurrence of

extreme daily maximums and minimums, and that the location of these extremes differs for

maximums and minimums. Importantly, however, while differences in averages are interesting

in their own right, our empirical analysis features grid cell fixed effects and country-level trends

to break cross-sectional correlation and instead focuses on within grid cell variability. The results

of this causal analysis are what we discuss next.

3.2 Reduced-form results: extreme temperature days and conflict events

Table 2 reports baseline estimates for equation (1), where the outcome is an indicator variable

equal to 1 if a grid cell experienced at least one conflict event in a year, zero otherwise. Estimates

associated with the variable Daily tmax >90p and its lag represent the percentage point variation

(pp) in the occurrence of conflict events caused by an additional day with extreme maximum

temperature. Symmetrically, the coefficients estimates for the variable Daily tmin >90p and its

lag represent the pp change in conflict events associated with an additional extreme minimum

temperature day. In column 1 we report results for a specification with cell fixed effects as the

only control. In column 2 we further control for total precipitation, and in column 3 we add year

fixed effects. Lastly, column 4 replaces year fixed effects with country-by-year fixed effects. Two-
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Table 2: Reduced-form regression results for the impact of extreme temperature days on conflict

Dependent variable: Indicator for conflict events

(1) (2) (3) (4)

Daily tmax >90p 0.061∗∗∗ 0.063∗∗∗ 0.073∗∗∗ 0.075∗∗∗

(0.019) (0.019) (0.020) (0.023)
Daily tmax >90p, t-1 0.017 0.033 0.034 0.023

(0.017) (0.020) (0.021) (0.027)
Daily tmin >90p -0.059∗∗∗ -0.054∗∗∗ -0.044∗∗ -0.047∗∗

(0.017) (0.016) (0.019) (0.022)
Daily tmin >90p, t-1 -0.020∗ -0.027∗∗ -0.043∗∗∗ -0.028

(0.011) (0.013) (0.015) (0.020)

Observations 8,327 8,327 8,327 8,327
Total precipitation X X X
Year FE X
Country x year FE X
Cell FE X X X X

Notes: All regressions are estimated using OLS. Observations correspond to 757 cells
observed over 11 years (2010–2020). The outcome is a dummy equal to 1 if a conflict
event occurred in a cell during a year, zero otherwise. “Daily tmax >90p” and “Daily
tmin >90p” are, respectively, the number of days with maximum and minimum daily
temperature in the 90th percentile defined on the 1979–2009 sub-monthly climate
normal. All estimates are multiplied by 100 for ease of interpretation and represent
changes in percentage point. Standard errors are two-way clustered at the cell and
climate zone-year level and are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statis-
tical significance at 10%, 5% and 1% respectively.

way clustered standard errors at the cell and climate zone-year level are reported in parentheses

throughout.14

The results show that a marginal increase in days with extreme maximum temperature leads

to higher occurrence of conflicts events in that same year. Conversely, the contemporaneous im-

pact of days with extreme minimum temperature is negative, so that the occurrence of conflict

declines when the number of days with extreme minimum temperature increases. The non-

linear impact of extreme maximum and minimum days are consistent across columns, although

the impact of extreme maximums tends to increase with additional controls whereas the im-

pact of extreme minimums gets closer to zero. Coefficients for the lags of tmax and tmin have

14 In Appendix C we show that statistical inference is similar if we use spatial heteroskedastic and autocorrelation
consistent estimator (spatial HAC) based on Conley (1999), which allows for a correlation of errors among cells
whose centroid is at or below a certain distance. This approach to statistical inference is more computationally
intensive and does not guarantee a positive definite variance-covariance matrix, and given similar results we
employ two-way clustered standard errors in the subsequent results (see also Hsiang, 2016).
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consistent signs, but these are smaller in magnitude and are less precisely estimated.

Quantitatively, our preferred specification in column 4 suggests that one additional day with

extreme daily maximum increases the probability of conflict events by 0.075 pp (p-val.<0.01).

At the mean of the sample, this corresponds to an increase of about 0.9% in the unconditional

probability of conflict events. By contrast, an additional day with extreme minimum temperature

reduces the probability of conflict by 0.047 pp (p-val.<0.05), or about 0.6% of the unconditional

average. Given observed changes in the number of extreme temperature days relative to the

reference period discussed in Section 3.1, which is around 45 days per year, these impacts are

significant.

3.3 Heterogeneity: types of conflict events

Table 3 provides evidence about the impact of extreme temperature days on the occurrence of

different types of conflict events. In column 1 we consider battles between organized armed

forces, excluding civilians. In column 2 we focus on conflict events against civilians. Column 3

considers events of communal violence involving an identity militia but excluding government

forces. Lastly, column 4 documents state-based conflicts involving government forces and armed

organized groups. In each column we control for total precipitation and its lag, cell fixed effects

and country-by-year fixed effects. Two-way clustered standard errors are reported in parenthe-

ses throughout.

Results confirm countervailing impacts of days with extreme maximum temperature and

of those with extreme minimum temperature, but with different incidence by types of conflict

events. Columns 1 and 4 indicate that days with extreme maximum temperature increase the

probability of experiencing events categorized as battle by armed groups (by 0.059 pp in the

same year, p-val.<0.01, and by 0.037 pp in the following year, p-val.<0.05) and state-based

violence (0.064 pp in the same year, p-val.<0.01, and by 0.038 pp in the following year, p-

val.<0.05). Contemporaneous marginal effects represent around 1.2% of the unconditional

probability of battles between armed forces (lagged effect: 0.7%) and 1.4% for state-based

conflicts. For these types of conflicts, coefficients for days with extreme minimum temperature

have a negative sign but are small in magnitude and not precisely estimated.

For conflict events involving violence against civilians, we find that extreme maximum tem-

perature days increase the contemporaneous occurrence of conflicts by 0.041 pp (p-val.<0.05)
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Table 3: Impact of extreme temperature days on alternative types of conflict

Dependent variable: Indicator for conflict events

Battles between Violence against Communal State-based
armed forces civilians violence conflicts

(1) (2) (3) (4)

Daily tmax >90p 0.059∗∗∗ 0.041∗∗ -0.004 0.064∗∗∗

(0.015) (0.019) (0.005) (0.017)
Daily tmax >90p, t-1 0.037∗∗ 0.004 -0.008 0.038∗∗

(0.018) (0.026) (0.006) (0.017)
Daily tmin >90p -0.006 -0.035∗∗ -0.008 -0.009

(0.015) (0.017) (0.005) (0.014)
Daily tmin >90p, t-1 -0.011 -0.023 -0.0002 -0.014

(0.016) (0.017) (0.004) (0.016)

Observations 8,327 8,327 8,327 8,327
Total precipitation X X X X
Country x year FE X X X X
Cell FE X X X X

Notes: All regressions are estimated using OLS. Observations correspond to 757 cells observed over
11 years (2010–2020). The outcome is a dummy equal to 1 if the corresponding type of conflict
event occurred in a cell during a year, zero otherwise. “Daily tmax >90p” and “Daily tmin >90p”
are, respectively, the number of days with maximum and minimum daily temperature in the 90th

percentile defined on the 1979–2009 sub-monthly climate normal. All estimates are multiplied by
100 for ease of interpretation and represent changes in percentage point. Standard errors are two-
way clustered at the cell and climate zone-year level and are reported in parentheses. ∗, ∗∗ and ∗∗∗

denote statistical significance at 10%, 5% and 1% respectively.

while extreme minimum temperature days decrease it by 0.035 pp (p-val.<0.05). This is re-

spectively 0.8% and 0.7% of the unconditional probability of violence against civilians. Lagged

effects associated with violence against civilians have consistent signs but are not statistically

significantly different from zero. We do not find evidence that communal violence is affected by

extreme temperature days.

3.4 Heterogeneity: actors involved in conflict events

We now consider how extreme temperature days affect conflict events involving alternative

pairs of actors. Table 4, panel (a), presents results for equation (1) where the outcome is an

indicator variable equal to one for conflict events involving state forces against the following

actor: state forces (column 1), rebel groups (column 2), political militias (column 3), identity

militias (column 4), and civilians (column 5). Panels (b) repeats the analysis for conflict events
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involving rebel groups, panel (c) for political militias, and panel (d) for identity militias.15 Each

column includes total precipitation and its lag, as well as cell and country-by-year fixed effects.

Two-way clustered standard errors are reported in parentheses throughout.

Results in panel (a) indicate that days with extreme maximum temperature have a positive

impact on the occurrence of conflict events involving state forces and rebel groups, with point es-

timates of 0.052 pp in the same year (p-val.<0.01) and 0.040 pp in the year after (p-val.<0.05).

We also observe a positive and statistically significant effect of extreme maximums on conflict

events involving state forces against political militias (lagged effect of 0.022 pp, p-val.<0.05)

and against civilians (contemporaneous effect of 0.035 pp, p-val.<0.05). We do not find an ef-

fect of extreme temperature days for events involving state forces against state forces or against

identity militias.

Panels (b) to (d) show that, for pairs of actors not involving state forces, extreme maximum

days do not significantly impact the occurrence of conflict events. Instead, we find evidence that

days with extreme minimum temperature tend to reduce the occurrence of conflict events in-

volving political militias and civilians (lagged effect of -0.028 pp, p-val.<0.05) and rebel groups

against rebel groups (contemporaneous effect of -0.009 pp, p-val.<0.1). For other pairs of ac-

tors the sign associated with extreme minimum is predominantly negative but the associated

estimates are not precisely estimated.

3.5 Heterogeneity: local vulnerability factors

Results for equation (2) are reported in Table 5. In each column, we interact count indexes for

extreme temperature days and their respective lag with a variable Zi quantifying local vulnera-

bility factors. In column 1 we consider the role of economic development and use nighttime light

emissions as a proxy for local economic activities. Column 2 documents the role of agricultural

dependence by using cropland extent as an interaction. Column 3 uses an indicator variable for

the presence of ethno-political discrimination. Lastly, in column 4 we use population density as

15 Note that our data do not allow us to identify an initiator among the two actors. Estimates are therefore sym-
metrical with respect to the diagonal and omitted for simplicity. The only exception is conflict events involving
civilians, as civilians are unarmed and therefore always victims of conflict events.
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Table 4: Impact of extreme temperature days on conflict events with alternative pairs of actors

Dependent variable: Indicator for conflict events

Actor: State forces Rebel groups Political militias Identity militias Civilians
(1) (2) (3) (4) (5)

Panel a: State forces vs.

Daily tmax >90p 0.004 0.052∗∗∗ 0.010 0.003 0.035∗∗

(0.003) (0.016) (0.010) (0.003) (0.016)
Daily tmax >90p, t-1 -0.006 0.040∗∗ 0.022∗∗ 0.002 -0.009

(0.004) (0.018) (0.011) (0.003) (0.020)
Daily tmin >90p 0.0007 -0.004 -0.006 0.002 -0.008

(0.004) (0.014) (0.007) (0.003) (0.015)
Daily tmin >90p, t-1 0.002 0.0008 -0.014 -0.005 7.39× 10−5

(0.003) (0.015) (0.010) (0.003) (0.013)

Panel b: Rebel groups vs.

Daily tmax >90p − 0.007 -0.0009 -0.0003 0.010
(0.004) (0.003) (0.0009) (0.009)

Daily tmax >90p, t-1 − -0.009 0.003 -0.0007 0.011
(0.007) (0.002) (0.002) (0.008)

Daily tmin >90p − -0.009∗ 0.002 -0.0007 -0.010
(0.005) (0.003) (0.0007) (0.007)

Daily tmin >90p, t-1 − -0.003 -0.0007 -0.001 -0.004
(0.005) (0.001) (0.0009) (0.007)

Panel c: Political militias vs.

Daily tmax >90p − − 0.003 0.0008 0.023
(0.002) (0.0006) (0.016)

Daily tmax >90p, t-1 − − 0.002 0.001 0.019
(0.001) (0.001) (0.019)

Daily tmin >90p − − -0.002 -0.0005 -0.015
(0.002) (0.0005) (0.012)

Daily tmin >90p, t-1 − − 0.0001 -0.0003 -0.028∗∗

(0.001) (0.0003) (0.014)

Panel d: Identity militias vs.

Daily tmax >90p − − − -0.004 -0.003
(0.003) (0.004)

Daily tmax >90p, t-1 − − − -0.004 -0.005
(0.003) (0.004)

Daily tmin >90p − − − -0.003 -0.006
(0.002) (0.004)

Daily tmin >90p, t-1 − − − -0.002 0.003
(0.003) (0.004)

Notes: Each panel and column displays the results of an OLS regression where the outcome is a dummy equal to 1 if a
conflict event occurred between two specific actors in a cell during a year. “Daily tmax >90p” and “Daily tmin >90p”
are, respectively, the number of days with maximum and minimum daily temperature in the 90th percentile defined on
the 1979–2009 sub-monthly climate normal. All estimates are multiplied by 100 for ease of interpretation and represent
changes in percentage point. Each regression is estimated on 8,327 grid cell by year observations and includes total
precipitation (and its lag) as control variables as well as cell fixed effects and country by year fixed effects. Standard
errors are two-way clustered at the cell and climate zone-year level and are reported in parentheses. ∗, ∗∗ and ∗∗∗

denote statistical significance at 10%, 5% and 1% respectively.
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Table 5: Impact of extreme temperature days on conflict for alternative vulnerability factors

Dependent variable: Indicator for conflict events

Variable Z: Economic Agricultural Ethno-political Demographic
development dependence discrimination pressure

(1) (2) (3) (4)

Daily tmax >90p 0.059∗∗ 0.083∗∗∗ 0.056∗∗∗ 0.066∗∗∗

(0.024) (0.025) (0.020) (0.023)
Daily tmax >90p × Z -0.021 -0.0003 0.160∗ 6.71× 10−5

(0.053) (0.0007) (0.082) (8.79× 10−5)
Daily tmax >90p, t-1 0.022 0.040 0.006 0.024

(0.029) (0.030) (0.025) (0.031)
Daily tmax >90p, t-1 × Z 0.019 -0.0010 0.162∗∗∗ −1.03× 10−5

(0.042) (0.0007) (0.051) (0.0001)
Daily tmin >90p -0.038 -0.037 -0.032 -0.031

(0.024) (0.023) (0.021) (0.024)
Daily tmin >90p × Z 0.002 -0.0006 -0.099∗ -0.0001

(0.052) (0.0007) (0.059) (9.32× 10−5)
Daily tmin >90p, t-1 -0.028 -0.040∗ -0.007 -0.033

(0.019) (0.022) (0.017) (0.021)
Daily tmin >90p, t-1 × Z -0.002 0.001 -0.142∗∗ 4.02× 10−5

(0.030) (0.0008) (0.054) (8.84× 10−5)

Observations 6,813 8,327 8,327 8,327
Total precipitation X X X X
Country x year FE X X X X
Cell FE X X X X

Notes: All regressions are estimated with OLS using cell by year observations. The outcome is a dummy
equal to 1 if a conflict event occurred in a cell during a year, zero otherwise. “Daily tmax >90p” and “Daily
tmin >90p” are, respectively, the number of days with maximum and minimum daily temperature in the
90th percentile defined on the 1979–2009 sub-monthly climate normal. The variable Z corresponds
to a specific vulnerability factor: economic development (column 1), agricultural dependence (column
2), ethno-political discrimination (column 3), and demographic pressure (column 4). All estimates are
multiplied by 100 for ease of interpretation and represent changes in percentage point. Standard errors
are two-way clustered at the cell and climate zone-year level and are reported in parentheses. ∗, ∗∗ and
∗∗∗ denote statistical significance at 10%, 5% and 1% respectively.

a measure of demographic pressure.16 For each regression we control for total precipitation and

its lag, cell fixed effects and country-by-year fixed effects. Two-way clustered standard errors

are reported in parentheses.

Overall, results provide little evidence that economic development, agricultural dependence

and demographic pressure act as vulnerability factors, as none of the coefficients associated with

interaction terms in columns 1, 2 and 4 are statistically significant at the usual confidence levels.

The only factor that is found to affect the relationship between extreme temperature days and

16 As mentioned previously, vulnerability factors are measured at the beginning of the observation periods to mit-
igate concerns of endogeneity. This corresponds to 2010, except for nighttime light emissions which are only
available from 2012. For this variable, the number of observation decreases to 6,813 observations (column 1)
since we drop 2010 and 2011 data.
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conflict events is ethno-political discrimination (column 3). In particular, when discrimination

is present in a grid cell, the positive impact of extreme maximum temperature days on conflict

incidence is 0.16 pp higher both contemporaneously (p-val.<0.1) and with a lag (p-val.<0.01).

Conversely, ethno-political discrimination reinforces the mitigating impact of days with extreme

minimum temperature on the occurrence of conflict events. Specifically, in cells experiencing

ethno-political discrimination the marginal effect of an additional extreme minimum tempera-

ture day is 0.1 pp lower contemporaneously (p-val.<0.1) and declines by 0.142 pp with a lag

(p-val.<0.05).

Taken together, these results indicate that ethno-political discrimination reinforces the im-

pact of extreme temperature days by a factor of two to three relative to what we measure at the

average of the sample.

4 Results for robustness checks

This section reports the results of our robustness checks. First, we provide results for 1◦×1◦ grid

resolution. Second, we employ alternative measures of temperature-driven weather shocks.

Third, we replicate the analysis using UCDP GED as an alternative source of conflict data. Lastly,

we exclude grid cells affected by the Rohingya conflict in Myanmar.

4.1 Robustness: grid resolution

Results reported in Table 6 replicate baseline regression results with grid cells of 1◦ latitude/longitude.

Following the reporting in Table 2, we gradually add control variables and fixed effects from

columns 1 to 4. We report two-way clustered standard errors in parentheses.

Relative to baseline reduced form results, estimates for the contemporaneous effect of ex-

treme maximum temperature days are larger. Similarly, coefficients for extreme minimum tem-

perature days tend to be more negative than baseline counterparts, although point estimates in

column 4 are almost identical. Estimates for lagged effects tend to be consistent with baseline

results and are not precisely estimated. In fact, estimated standard errors tend to be larger

throughout, which suggests that a lower grid cell resolution primarily affects accuracy rather

than our qualitative findings.
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Table 6: Reduced-form results with a 1◦ latitude/longitude spatial resolution

Dependent variable: Indicator for conflict events

(1) (2) (3) (4)

Daily tmax >90p 0.128∗∗∗ 0.137∗∗∗ 0.149∗∗∗ 0.129∗∗

(0.040) (0.043) (0.048) (0.058)
Daily tmax >90p, t-1 0.026 0.052 0.071 -0.013

(0.035) (0.042) (0.049) (0.064)
Daily tmin >90p -0.117∗∗∗ -0.109∗∗ -0.077∗ -0.053

(0.040) (0.041) (0.045) (0.058)
Daily tmin >90p, t-1 -0.035 -0.051 -0.058 0.046

(0.029) (0.033) (0.037) (0.054)

Observations 2,222 2,222 2,222 2,222
Total precipitation X X X
Year FE X
Country x year FE X
Cell FE X X X X

Notes: All regressions are estimated using OLS. Observations correspond to 202
cells observed over 11 years (2010–2020). The outcome is a dummy equal to
1 if a conflict event occurred in a cell during a year, zero otherwise. “Daily tmax
>90p” and “Daily tmin >90p” are, respectively, the number of days with maximum
and minimum daily temperature in the 90th percentile defined on the 1979–2009
sub-monthly climate normal. All estimates are multiplied by 100 for ease of inter-
pretation and represent changes in percentage point. Standard errors are two-way
clustered at the cell and climate zone-year level and are reported in parentheses.
∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5% and 1% respectively.

4.2 Robustness: alternative measures of weather shocks

In Table 7 we reproduce baseline estimation with alternative temperature-driven measures of

weather shocks. In column 1, we report results for mean temperature standardized relative

to local 1979-2009 climate normal. In column 2, we use mean daily maximum and minimum

temperature expressed as deviations from their 1979-2009 climate normal. In column 3, we

examine the effect of extreme temperature days identified with the daily average. Finally, we

introduce a 12-month SPEI either as an index (column 4) or to indicate the occurrence of a

drought (column 5). These variables are described in more detail in Appendix B. In columns 1

to 3 we control for total precipitation and its lag, and all columns include cell fixed effects and

country-by-year fixed effects. Two-way clustered standard errors are reported in parentheses.

Overall, the only temperature-based measure that has a consistent effect on conflict events

is average maximum and minimum daily temperature (column 2). Specifically, a one standard
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Table 7: Reduced-form results with alternative measures of weather shocks

Dependent variable: Indicator for conflict events

(1) (2) (3) (4) (5)

Mean temperature 0.464
(0.596)

Mean temperature, t-1 -0.070
(0.625)

Maximum temperature 1.79∗∗∗

(0.628)
Maximum temperature, t-1 1.23

(0.863)
Minimum temperature -1.46∗

(0.778)
Minimum temperature, t-1 -1.02

(0.726)
Daily temperature >90p 0.022

(0.019)
Daily temperature >90p, t-1 -0.010

(0.022)
SPEI-12 -0.111

(0.565)
SPEI-12, t-1 0.777

(0.537)
SPEI-Drought -0.999

(0.892)
SPEI-Drought, t-1 -1.35

(1.27)

Observations 8,327 8,327 8,327 8,327 8,327
Total precipitation X X X
Country x year FE X X X X X
Cell FE X X X X X

Notes: All regressions are estimated using OLS. Observations correspond to 757 cells observed
over 11 years (2010–2020). The outcome is a dummy equal to 1 if a conflict event occurred
in a cell during a year, zero otherwise. Independent variables capture alternative measures of
temperature-driven weather shocks and are described in Appendix B. All estimates are multiplied
by 100 for ease of interpretation and represent changes in percentage point. Standard errors are
two-way clustered at the cell and climate zone-year level and are reported in parentheses. ∗, ∗∗

and ∗∗∗ denote statistical significance at 10%, 5% and 1% respectively.

deviation increase in maximum temperature is associated with a 1.79 percentage point (pp)

increase in the contemporaneous occurrence of conflict events (p-value <0.01). Conversely, a

one standard deviation increase in minimum temperature is associated with a 1.46 percentage

point (pp) decrease in the contemporaneous occurrence of conflict events (p-value <0.1). While

lagged effects have consistent signs, these are not statistically significant at conventional levels.

Other measures of weather shocks do not suggest an impact on the occurrence of conflict
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Table 8: Reduced-form regression results with alternative conflict data (UCDP GED)

Dependent variable: Indicator for conflict events

(1) (2) (3) (4)

Daily tmax >90p 0.016 0.014 0.018 0.025
(0.012) (0.014) (0.016) (0.016)

Daily tmax >90p, t-1 0.011 0.016 0.020 0.025
(0.013) (0.013) (0.016) (0.016)

Daily tmin >90p -0.038∗∗∗ -0.036∗∗∗ -0.025 -0.026
(0.012) (0.011) (0.016) (0.016)

Daily tmin >90p, t-1 -0.009 -0.010 -0.019 -0.021
(0.012) (0.012) (0.015) (0.017)

Observations 8,327 8,327 8,327 8,327
Total precipitation X X X
Year FE X
Country x year FE X
Cell FE X X X X

Notes: All regressions are estimated using OLS. Observations correspond to 757
cells observed over 11 years (2010–2020). The outcome is a dummy equal to 1
if a conflict event occurred in a cell during a year, zero otherwise, and is derived
from the Uppsala Conflict Data Program Georeferenced Event Dataset (UCDP
GED, V.22.1). See Appendix B for further details. “Daily tmax >90p” and “Daily
tmin >90p” are, respectively,the number of days with maximum and minimum
daily temperature in the 90th percentile defined on the 1979–2009 sub-monthly
climate normal. All estimates are multiplied by 100 for ease of interpretation and
represent changes in percentage point. Standard errors are two-way clustered at
the cell and climate zone-year level and are reported in parentheses. ∗, ∗∗ and
∗∗∗ denote statistical significance at 10%, 5% and 1% respectively.

events, which supports the relevance of extreme temperature as a trigger for conflict events. In

particular, the fact that mean temperature does not affect the occurrence of conflict events can

be linked to the countervailing impacts of maximum and minimum temperature shocks.

4.3 Robustness: alternative conflict data

In Table 8 we replicate baseline regression results using the UCDP GED as an alternative source

of data (see Appendix B for further details and a comparison with ACLED data). We follow the

presentation in Table 2 and gradually add control variables and fixed effects from columns 1 to

4. We report two-way clustered standard errors in parentheses.

Results show that the coefficients associated with extreme temperature days are of similar

sign throughout, for both contemporaneous and lagged effects. Point estimates are, however,

smaller in magnitude, and in our preferred specification (column 4) these do not reach statistical
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significance at conventional levels. Therefore, while the results provide confidence in the validity

of the effect reported in our baseline analysis, we are not able to confirm effect sizes using UCDP

GED. One explanation for these inconclusive results is the more restrictive definition of conflict

events used in UCDP GED (see Harari and La Ferrara, 2018, for a similar result for Africa). This

implies lower variability in the outcome, and Figure B1 in Appendix B shows that UCDP GED

features no conflict events in Vietnam and Laos for 2010–2020 whereas ACLED suggest a much

more detailed picture.

4.4 Robustness: Rohingya conflict in Myanmar

Our last robustness checks consider the potential role of the Rohingya conflict in Myanmar for

our results. Table 9 reports baseline reduced form estimation focusing only on grid cells that do

not overlap with Rakhine State. We follow the presentation of Table 2 and gradually add control

variables and fixed effects from columns 1 to 4. Two-way clustered standard errors are reported

in parentheses.

Results suggest that the Rohingya conflict has a limited impact on the magnitude of our base-

line results. Specifically, excluding cells overlapping with the Rakhine State suggests a slightly

lower contemporaneous impact of extreme maximum days, whereas the contemporaneous im-

pact of extreme minimum temperature days is somewhat more negative. The precision of our

estimates remains very similar.

5 Discussion and conclusion

This paper has studied the impact of extreme temperature days on conflict events in mainland

Southeast Asia. While climate change has implied a steady increase in average temperature from

1979, our data indicate that the yearly number of days with maximum temperature above the

90th percentile of the sub-monthly climate normal has more than doubled. Estimation results

from our preferred specification suggest that an additional day with extreme maximum temper-

ature increases the unconditional probability of conflict events by about 0.9% on average, which

confirms evidence from the existing literature. More interestingly, we show that the number of

days with extreme minimum temperature also increased by a factor of more than two, suggest-

ing that the shift in both tails of the temperature distribution follow a similar trend. In our
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Table 9: Reduced-form results excluding Rakhine State in Myanmar

Dependent variable: Indicator for conflict events

(1) (2) (3) (4)

Daily tmax >90p 0.049∗∗∗ 0.048∗∗∗ 0.062∗∗∗ 0.061∗∗∗

(0.016) (0.016) (0.019) (0.020)
Daily tmax >90p, t-1 0.006 0.015 0.017 -0.005

(0.013) (0.017) (0.020) (0.022)
Daily tmin >90p -0.058∗∗∗ -0.055∗∗∗ -0.046∗∗ -0.051∗∗

(0.016) (0.017) (0.019) (0.022)
Daily tmin >90p, t-1 -0.013 -0.017 -0.025∗ -0.013

(0.012) (0.015) (0.015) (0.018)

Observations 8,008 8,008 8,008 8,008
Total precipitation X X X
Year FE X
Country x year FE X
Cell FE X X X X

Notes: All regressions are estimated using OLS. Observations correspond to 728 cells
observed over 11 years (2010–2020). The outcome is a dummy equal to 1 if a conflict
event occurred in a cell during a year, zero otherwise. “Daily tmax >90p” and “Daily
tmin >90p” are, respectively, the number of days with maximum and minimum
daily temperature in the 90th percentile defined on the 1979–2009 sub-monthly
climate normal. All estimates are multiplied by 100 for ease of interpretation and
represent changes in percentage point. Standard errors are two-way clustered at
the cell and climate zone-year level and are reported in parentheses. ∗, ∗∗ and ∗∗∗

denote statistical significance at 10%, 5% and 1% respectively.

preferred specification, an additional day with minimum temperature above the 90th percentile

reduces the unconditional probability of conflict events by about 0.6% on average.

While the impact of extreme maximum and minimum temperature days have opposite signs,

both results can be rationalized by the theory of opportunity cost. As documented in the lit-

erature (Ranson, 2014; Breckner and Sunde, 2019), days with extreme maximum temperature

decrease the opportunity cost of participating in violence and stimulate tensions between groups

due to relative deprivation. Conversely, the occurrence of extreme minimum temperature can

improve livelihood conditions of local populations, and therefore decrease incentives for civil-

ians and rebel groups to take part in conflicts or fight over resources.

Taken together, non-linearities in how conflict events respond to climate change imply that a

shift in the distribution of temperature lead to compensating effects on aggregate. Importantly,

however, our data shows that the geographical localization of extreme maximum and minimum

temperature shocks is distinct, and we find that the type of conflict and population affected
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by extreme maximums and minimums are not the same. Specifically, extreme maximums have

been shown to be associated with specific types of conflicts: battles by armed groups, state-based

violence, as well as violence against civilians. Moreover, events triggered by extreme maximum

temperature days involve state forces and include violence against rebel groups, political mili-

tias and civilians. By contrast, the reduction of conflict events associated with extreme minimum

temperature days predominantly involves civilians, and includes interactions with political mili-

tia and rebel groups, but not governmental forces.

Despite these differences, an important common feature of conflict events affected by changes

in extreme maximum and minimum temperature is that they are more likely to occur in the pres-

ence of ethno-political discrimination. Areas that feature politically marginalized ethnic groups

are therefore more responsive to changes in the climate and the occurrence of new extremes,

although the effect of climate change can also benefit the local population. Because conflicts

represent a specific adaptation response which is outside of traditional market-based adapta-

tion, institutions and policies can reallocate resources in order to shelter civilian populations

from some but not all types of climate extremes (i.e., extreme maximums).

We close by emphasizing that Southeast Asia remains an under-studied region in the climate

change literature seeking to quantify socio-economic impacts, and we offer two avenues open

for research. First, while we employ highly disaggregated data, micro-level studies on behav-

ior by vulnerable population remains important. In particular, Southeast Asia is an important

rice growing area, and a more detailed account of precipitation and variability induced by local

monsoon regime is an important area for future research. Second, migration is another adap-

tation margin to climate shocks, which can itself cause tensions and trigger conflicts. A better

understanding of such displacement effects in relation to climate change is much needed.
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Appendix A Additional data for heterogeneous effects

This Appendix discusses data for vulnerability factors identified in Section 2.3. We measure

economic development in each grid cell with 2012 data on average nighttime light emissions

provided by the Earth Observation Group, Visible and Infrared Imaging Suite (Elvidge et al.,

2021).17 We select the masked average radiance with “background, biomass burning, and au-

rora zeroed out.” The data is available with a 15 arc second in nW/cm2/sr and averaged for

each grid cell. We apply an inverse hyperbolic sine transformation to mitigate skewness and

accommodate the presence of zeros.

To proxy agricultural dependence, we employ the extent of cropland coverage in each cell.

This data is from Potapov et al. (2022). Specifically, based on satellite measurements, the au-

thors provide global maps at a resolution of 0.025 pixels from 2000 to 2019, every four years.

Their definition of croplands is “land used for annual and perennial herbaceous crops for human

consumption, forage (including hay) and biofuel” which is “largely consistent with the arable

land category reported by the Food and Agriculture Organization” (Potapov et al., 2022, p. 19).

For each grid cell, we compute average coverage based on data for 2010.

The metric of ethno-political discrimination is the presence of a politically excluded ethnic

group in a cell. To identify such groups, we rely on the 2021 Ethnic Power Relations Dataset

(Vogt et al., 2015). This data is based on expert surveys and reports on politically relevant

ethnic groups worldwide and their access to power from 1946 to 2021, whereby a community

may dominate, share authority, or be excluded from it. We retain those groups whom the state

seeks to keep out of power and which are targets of discrimination. We then combine these data

with geo-referenced Ethnic Power Relations Dataset to locate these groups spatially and retain

only the status in 2010. For each cell, we code an indicator variable equal to 1 if a politically

marginalized ethnic group resides there, zero otherwise.

Lastly, we measure demographic pressure with data on population density from the Gridded

Population of the World V4 (Center for International Earth Science Information Network, 2018).

This dataset relies on national censuses and population registers to model the global spatial

17 This data is only available from 2012 onwards. An alternative data source available for the estimation period is
the Defense Meteorological Satellite Program (1992–2013). However, concerns have been raised as to its relia-
bility for low-density rural areas (Gibson et al., 2021), which may be particularly problematic for the countries
we consider.
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distribution for every five years from 2000 to 2020 and at a resolution of up to 30 arc seconds.

For each grid cell, we compute the mean density based on data for 2010.
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Appendix B Additional data for robustness checks

This Appendix discusses data used in the robustest checks laid out in Section 2.4. In particular,

we consider a number of alternatives to extreme temperature days. First, we compute mean

temperature in each grid cell and year, standardized based on the 1979-2009 climate normal.

Second, we use daily maximum and minimum values to compute the respective averages for

each grid cell and year, and standardize it with respect to average maximum and minimum

computed for the 1979-2009 climate normal. Third, we compute an index for the number of

extreme temperature days based on daily averages, representing days in the 90th percentile

of the 1979–2009 climate normal. Fourth, we consider a SPEI retrieved from SPEIbase v.2.7

(Vicente-Serrano et al., 2010). The SPEI combines temperature, precipitation, latitude, wind

speed, and sunshine exposure to assess soil moisture conditions. The index is based on inputs

from the Climatic Research Unit of the University of East Anglia and is expressed as standard

deviations from the average. We use the measure from December with a 12-month time scale,

which reflects the situation during the whole year.

In the robustness checks we also consider an alternative source of data on conflict events

and derive our outcome variable from the Uppsala Conflict Data Program Georeferenced Event

Dataset (UCDP GED), version 22.1 (Sundberg and Melander, 2013; Davies et al., 2022). These

data cover organized violence across the world from 1989 to 2021. The coding strategy differs

from ACLED in two ways. First, it only considers events that are part of a large-scale conflict

resulting in at least 25 deaths within a year. Second, UCDP GED only includes “incident where

armed force was used by an organized actor against another organized actor, or against civilians,

resulting in at least 1 direct death” (Högbladh, 2022, p. 4). For each cell by year observation,

our outcome variable is equal to one if at least one conflict event as defined above occurred,

zero otherwise.

As compared to UCDP GED, ACLED features a broader definition of conflicts and is not con-

strained by a minimum number of deaths over the year. A comparison of the spatial distribution

of conflict events is reported in Figure B1.
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Figure B1: Alternative data on conflict events in mainland Southeast Asia

(a) ACLED dataset (b) UCDP GED dataset

Notes: This figure shows the spatial distribution of conflict events for 2010-2020 defined as “an incident where armed
force was used by an organized actor against another organized actor, or against civilians, resulting in at least 1 direct
death” (p. 4 Högbladh, 2022). Panel (a) reports data from the Armed Conflict Location & Event Data Project (ACLED).
Panel (b) shows data from the Uppsala Conflict Data Program Georeferenced Event Dataset (UCDP GED). Each circle
represents an event and size of the circle is proportional to the number of victims.
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Appendix C Baseline results with spatial heteroskedastic and auto-

correlation consistent standard errors

In Table C1 we test for the sensitivity of our baseline reduced-form results with respect to the

use of spatial heteroskedastic and autocorrelation consistent standard errors (spatial HAC Con-

ley, 1999). We vary the cutoff of spatial dependence in the error term from 0 (column 1) to

600 kilometers (column 5), which corresponds to approx. 0 and 10 cells in each direction, re-

spectively. Estimated standard errors are reported below each coefficient and suggest that they

remain very similar to our baseline results reported in Table 2.

Table C1: Reduced-form results with alternative cutoff distance for spatial HAC standard errors

Dependent variable: Indicator for conflict events

Cutoff distance (km) : 0 150 300 450 600
(1) (2) (3) (4) (5)

Daily tmax >90p 0.075∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.075∗∗∗

(0.018) (0.020) (0.020) (0.020) (0.020)
Daily tmax >90p, t-1 0.022 0.022 0.022 0.022 0.022

(0.019) (0.020) (0.021) (0.021) (0.022)
Daily tmin >90p -0.047∗∗∗ -0.047∗∗ -0.047∗∗ -0.047∗∗ -0.047∗∗

(0.018) (0.020) (0.021) (0.020) (0.020)
Daily tmin >90p, t-1 -0.028 -0.028 -0.028 -0.028 -0.028

(0.017) (0.018) (0.019) (0.020) (0.020)

Observations 8,327 8,327 8,327 8,327 8,327
Control (total precipitation) X X X X X
Country x year FE X X X X X
Cell FE X X X X X

Notes: All regressions are estimated using OLS. Observations correspond to 757 cells observed over 11
years (2010–2020). The outcome is a dummy equal to 1 if a conflict event occurred in a cell during
a year, zero otherwise. “Daily tmax >90p” and “Daily tmin >90p” are, respectively, the number of
days with maximum and minimum daily temperature in the 90th percentile defined on the 1979–2009
sub-monthly climate normal. All estimates are multiplied by 100 for ease of interpretation and represent
changes in percentage point. ∗, ∗∗ and ∗∗∗ denote statistical significance at 10%, 5% and 1% respectively.
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